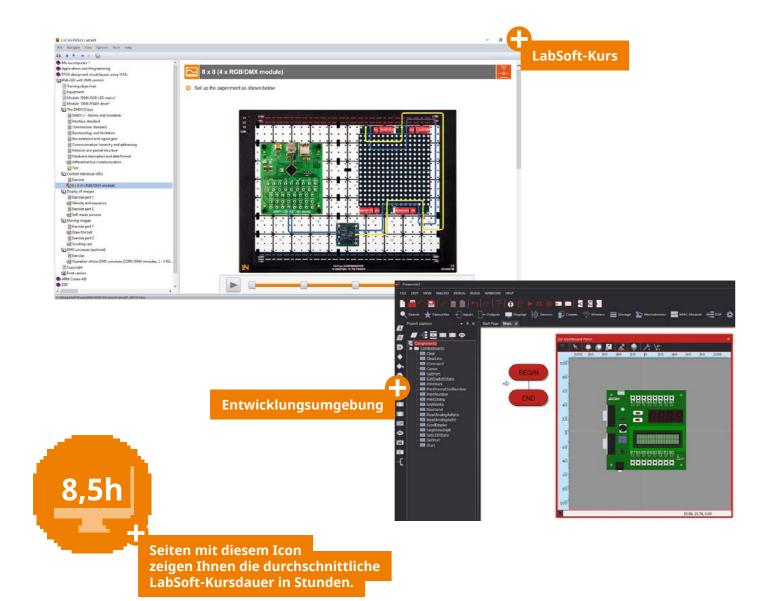


MODERNE INDUSTRIELLE PROZESSE BENÖTIGEN EINE INTELLIGENTE STEUERUNG, REGELUNG UND ÜBERWACHUNG. DIESE AUFGABEN ÜBERNEHMEN MIKROCOMPUTER – MIT HILFE MECHATRONISCHER GERÄTE. PROGRAMMIERUNG WIRD DAHER IMMER WICHTIGER.

INHALTSVERZEICHNIS


Menr als nur nardware: Die didaktische komplettiosung
Experimentieren mit UniTrain – Die Lernhardware
Experimentieren mit LabSoft –Die Lernsoftware
Auf einen Blick -Programmiersprachen & Entwicklungsumgebungen
Microcontroller & FPGA
Basisausstattungen
UML-Programmierung mit Arduino Uno (8-BIT)
mit 8-Bit PIC16F1937
UML-Programmierung mit 16-Bit dsPIC33EP
mit 32-Bit ARM AT91SAM7
Assembler-Programmierung mit 8-Bit PIC16F887
C-Programmierung mit 32-Bit ARM Cortex M3
VHDL mit FPGA Lattice XP2
Verilog mit FPGA Altera Cyclone IV
Erweiterungen und Anwendungen
Ergänzungsausstattung Temperatursensor-Modul
Temperatursensor-Bausatz
Ergänzungsausstattung Serielle Datenübertragung über RS485
Bühnentechnik mit DMX512
Ergänzungsausstattung Digitale Signalverarbeitung
Ampelsteuerung an einer Kreuzung
Erweiterungen Industrie 4.0
CPS – Cyber-Physische Systeme
Ergänzungsausstattung Cyber-Physische Systeme
ErgänzungsausstattungIndustrielle Schnittstelle
Internet of Things – Ein intelligenter Knoten
Mikroprozessor
Basisaustattung Grundlagen der Computertechnik
Ergänzungsausstattung Anwendung und Programmierung

EXPERIMENTIEREN MIT UNITRAIN - DIE LERNHARDWARE

EXPERIMENTIEREN MIT LABSOFT -DIE LERNSOFTWARE

LabSoft-Kurse

LabSoft ist die komfortable Lernumgebung von Lucas-Nülle. Über eine einfache Navigation hat der Nutzer freien Zugriff auf alle Inhalte. Auch die Steuerung der UniTrain-Hardware gelingt mit diesem smarten Programm.

Alle Messergebnisse speichert LabSoft für jeden Nutzer einzeln – das ideale Tool für die Lernstandskontrolle.

Vorteile

- Direkter Zugriff auf alle Kursinhalte
- Steuerung des Interfaces über virtuelle Instrumente
- Nutzerbezogene Speicherung von Messergebnissen
- Betrieb lokal, im Netzwerk oder in Kombination mit einem LMS
- Sprachvielfalt: Alle von HTML unterstützten Sprachen möglich

Entwicklungsumgebung

Der Werkzeugkasten eines jeden Programmierers ist die Entwicklungsumgebung. Hier werden die Programme geschrieben, compiliert und überprüft.

Jeder Ausstattung stellt Lucas-Nülle die ideale Entwicklungsumgebung zur Seite. Deren Bedienung lernt der Nutzer im LabSoft-Kurs.

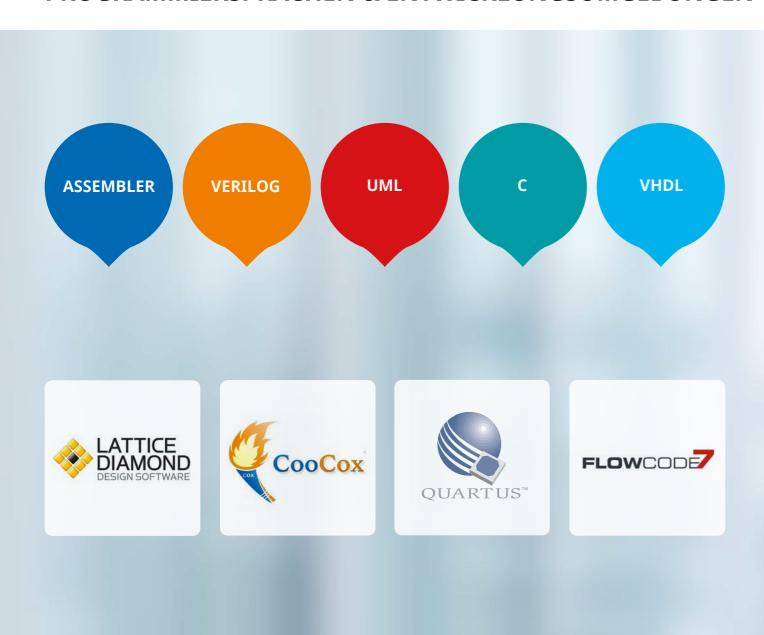
Vorteile

- Praxisnahes Lernen an industriellen Standardprogrammen
- · Vordefinierte Herangehensweise
- · Eingebaute Debugging-, Simulations- und Monitoringwerkzeuge

LabSoft Classroom Manager (optional)

Die umfangreiche Administrationssoftware für Lerngruppen von Lucas-Nülle hilft Ihnen bei der täglichen Routine. Einfach installiert läuft das Programm in ihrem lokalen Netzwerk, ohne auf weitere Datenbanken oder Serversysteme zugreifen zu müssen.

- · Manager: Lerngruppen verwalten
- · Reporter: Lernfortschritt im Blick halten
- · Editor: Inhalte individualisieren
- · Questioner: Aufgaben selbst erstellen
- TestCreator: Wissen und Können abfragen



AUF EINEN BLICK – PROGRAMMIERSPRACHEN & ENTWICKLUNGSUMGEBUNGEN

MICROCONTROLLER & FPGA

Mikrocontroller 8-Bit und 16-Bit

8-Bit Arduino Uno

8-Bit PIC16F1937

8-Bit PIC16F887

16-Bit dsPIC33EP

Mikrocontroller 32-Bit

32-Bit Cortex M3

32-Bit ARM AT91SAM7

Programmierbare Logikbausteine

FPGA Lattice XP2

FPGA Altera Cyclone IV

Für die Programmierung von Mikrocomputern ist das Beherrschen verschiedener, unterschiedlich komplexer Programmiersprachen notwendig.

Mit dem didaktischen Gesamtkonzept auf Basis von UniTrain unterrichten Sie die diversen, aufgeführten Programmiersprachen in einheitlicher Form. Auf Basis der hier aufgeführten Hardware bietet Lucas-Nülle didaktisch aufgearbeitete Komplettlösungen.

Neben Mikrocontrollern mit unterschiedlicher Geschwindigkeit und Genauigkeit umfasst die Hardware Basis auch Programmierbare Logikbausteine (FPGAs).

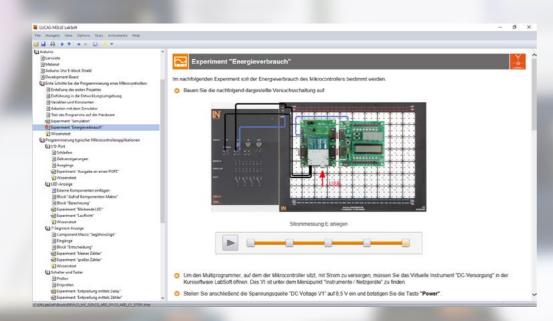
= modifier_ob.modifiers.new(** or object to mirror_ob ____od.mirror_object = mirror_ob

BASISAUSSTATTUNGEN

```
TILKROR Y":
  mod.use_x = False
  mod.use_y = True
  mod.use_z = False
  tion == "MIRROR_Z":
   mod.use_x = False
  mod.use_y = False
   mod.use z = True
 tion at the end -add back the desele
select= 1
 select=1
  Scene.objects.active = modifier
  cted" + str(modifier_ob)) # modifier
  ob.select = 0
context.selected_objects[0]
bjects[one.name].select = 1
 Please select exactly two objects,
 CERATOR CLASSES
```

mirror to the selected object""" mirror_mirror_x"

Unsere Basisausstattungen beinhalten neben den Hardware-Elementen auch alle nötigen Software-Werkzeuge: *

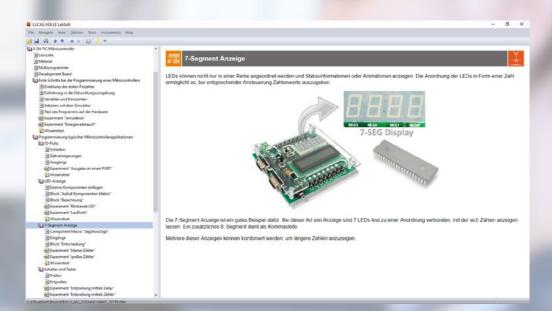

- Mikrocontroller-Modul mit integrierter Programmierschnittstelle
- Experimentiermodul mit wichtigen, typischen Anwendungen
- Interaktive Lernsoftware mit integrierten Messinstrumenten
- Entwicklungsumgebung
- Zubehör

Schnell und unkompliziert in die Mikrocomputerprogrammierung einsteigen.

^{*}Das UniTrain-System ist nicht in den Basisausstattungen enthalten.

UML-PROGRAMMIERUNG ... MIT ARDUINO UNO (8-BIT)

Arduino ist eine Rapid-Prototyping-Plattform. Die Hardware besteht aus einem Programmer-Board mit einem ATmega328-Mikrocontroller und einem Anwendungsboard mit einem Display, LEDs, Taster, Schalter, Sensoren usw.


Die IDE basiert auf Flowcode und soll auch weniger versierten Programmierern den Zugang zu Mikrocontrollern erleichtern. Projekte unterschiedlicher Komplexität lassen sich so sehr einfach in Form von Flussdiagrammen programmieren.

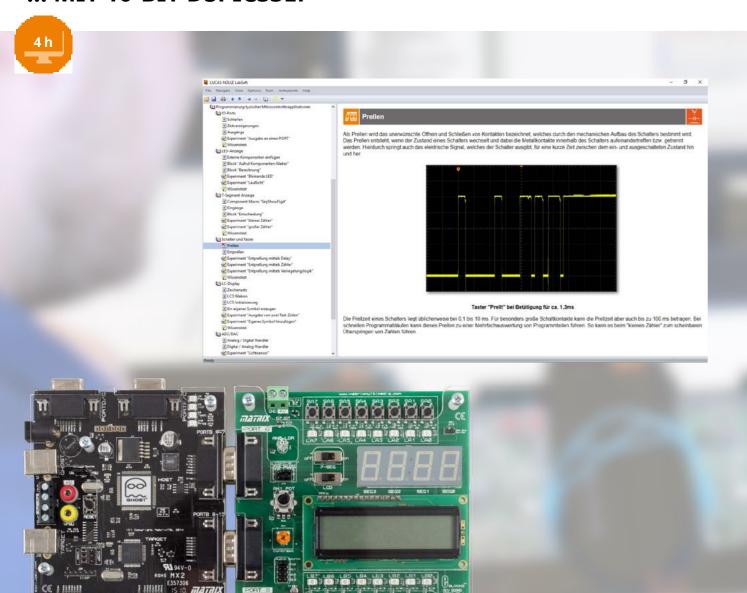
Lerninhalt

- Anschlüsse (Ports) und Pin-Belegung des Arduino UNO
- Inbetriebnahme und erste Schritte bei der Programmierung des Mikrocontrollers
- Programmierung mittels Flussdiagrammen (Erweiterung mit C-Code möglich)
- Kompilieren, Debuggen und Laden des Programms in den Mikrocontroller
- Programmierung typischer Mikrocontroller-Applikationen (u. a. Ein-/Ausgabefunktionen, AD-/DA-Umsetzung, Displayausgabe)

... MIT 8-BIT PIC16F1937

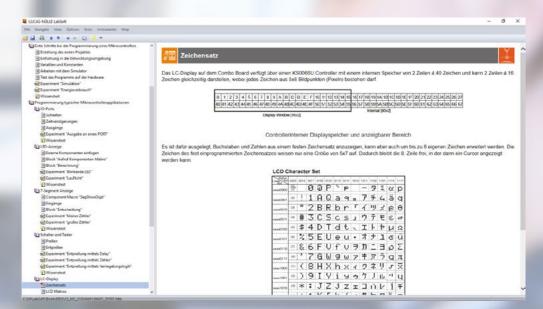
Aufgrund ihrer zahlreichen Varianten und Ausführungen sind PIC-Microcontroller weit verbreitet und werden häufig in Embedded Systems verwendet.

Der hier verwendete PIC16F1937 ist ein typischer 8-Bit PIC mittlerer Leistung und daher bestens für den Einstieg in die PIC-Programmierung geeignet.


Die IDE basiert auf Flowcode und soll auch weniger versierten Programmierern den Zugang zu Mikrocontrollern erleichtern. Projekte unterschiedlicher Komplexität lassen sich so sehr einfach in Form von Flussdiagrammen programmieren.

Lerninhalte

- Anschlüsse (Ports) und Pin-Belegung des Pic16F1937
- Inbetriebnahme und erste Schritte bei der Programmierung des Mikrocontrollers
- Programmierung mittels Flussdiagrammen (Erweiterung mit C-Code möglich)
- Kompilieren, Debuggen und Laden des Programms in den Mikrocontroller
- Programmierung typischer Mikrocontroller-Applikationen (u. a. Ein-/Ausgabefunktionen, AD-/DA-Umsetzung, Displayausgabe)


Art.-Nr. CO4205-7B

UML-PROGRAMMIERUNG ... MIT 16-BIT DSPIC33EP

... MIT 32-BIT ARM AT91SAM7

Das Programmer-Modul mit einem dsPIC-Mikrocontroller ist hervorragend für einen effizienten Einstieg in die 16-Bit-Architektur geeignet.

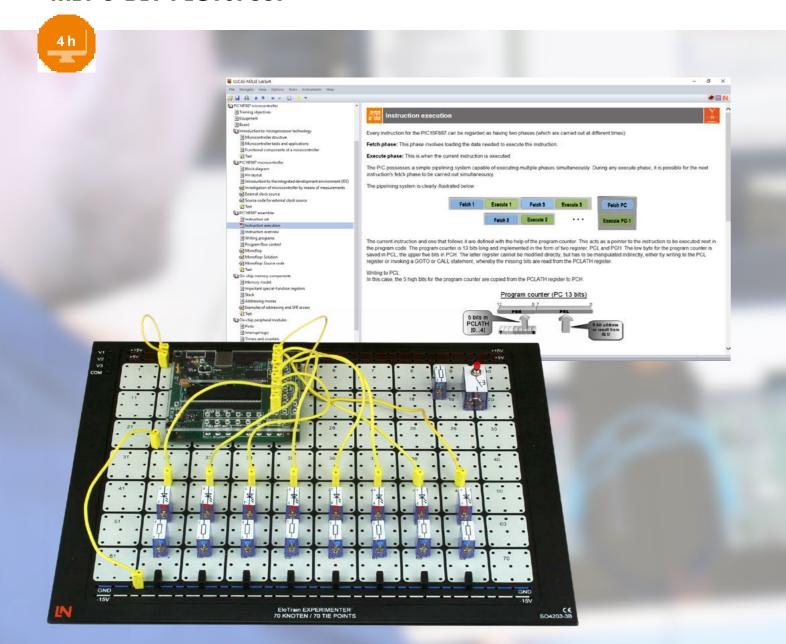
Die integrierte GHOST-Technologie erlaubt eine Hardwareüberwachung in Echtzeit.

Die IDE basiert auf Flowcode und soll auch weniger versierten Programmierern den Zugang zu Mikrocontrollern erleichtern. Projekte unterschiedlicher Komplexität lassen sich so sehr einfach in Form von Flussdiagrammen programmieren.

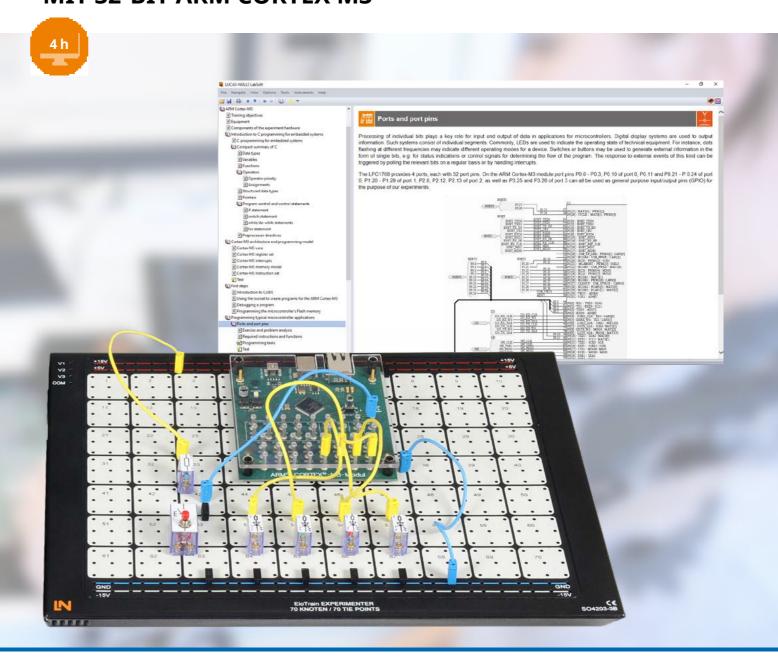
Lerninhalt

- Anschlüsse, Pin-Belegung und Ports des dsPIC33EP
- Inbetriebnahme und erste Schritte bei der Programmierung des Mikrocontrollers
- Programmierung mittels Flussdiagrammen (Erweiterung mit C-Code möglich)
- Kompilieren, Debuggen und Laden des Programms in den Mikrocontroller
- Programmierung typischer Mikrocontroller-Applikationen (u. a. Ein-/Ausgabefunktionen, AD-/DA-Umsetzung, Displayausgabe)

Wenn Sie mehr Genauigkeit, mehr Geschwindigkeit und mehr Speicher brauchen sind die 32-Bit-Mikrocontroller die richtige Wahl.


Dank dem multimedialen Kurs und der Entwicklungsumgebung Flowcode stellt die steigende Komplexität der Hardware kein Hindernis für ein schnelles Erreichen des Lernzieles dar.

Lerninhalte


- Architektur des Mikrocontrollers ARM AT91SAM7
- · Anschlüsse, Pin-Belegung und Ports
- Inbetriebnahme und erste Schritte bei der Programmierung des Mikrocontrollers
- Programmierung mittels Flussdiagrammen (Erweiterung mit C-Code möglich)
- Kompilieren, Debuggen und Laden des Programms in den Mikrocontroller
- Programmierung typischer Mikrocontroller-Applikationen (u. a. Ein-/Ausgabefunktionen, AD-/DA-Umsetzung, Displayausgabe)

Art.-Nr. CO4205-7C

ASSEMBLER-PROGRAMMIERUNG MIT 8-BIT PIC16F887

C-PROGRAMMIERUNG MIT 32-BIT ARM CORTEX M3

Hardwarenahe Programmierung mit Assembler sichert ein vertieftes Verständnis der internen Abläufe in einem Mikrocontroller und hilft so bei der effizienten Programmierung und Nutzung der Hardware-Ressourcen.

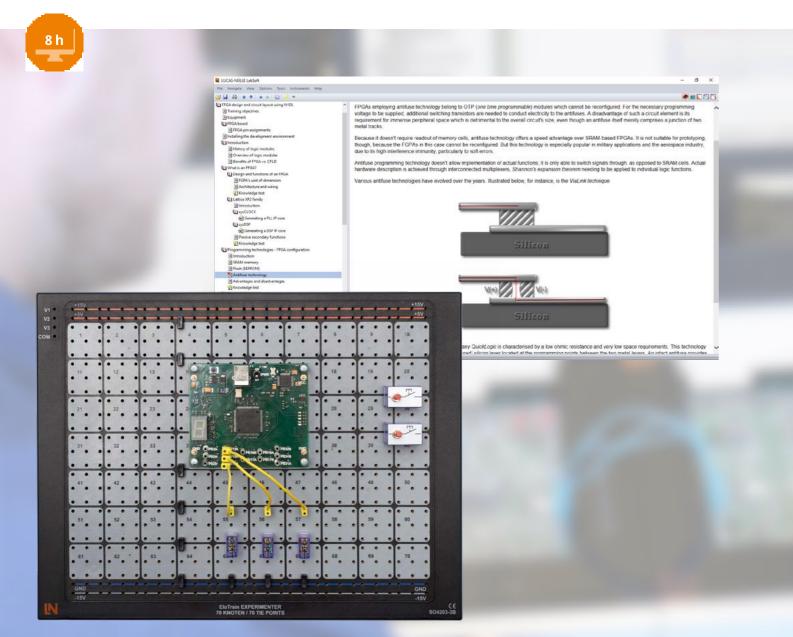
Durch den eingeschränkten Befehlssatz des 8-Bit PIC16F887 fällt das Erlernen von Assembler besonders leicht.

Lerninhalt

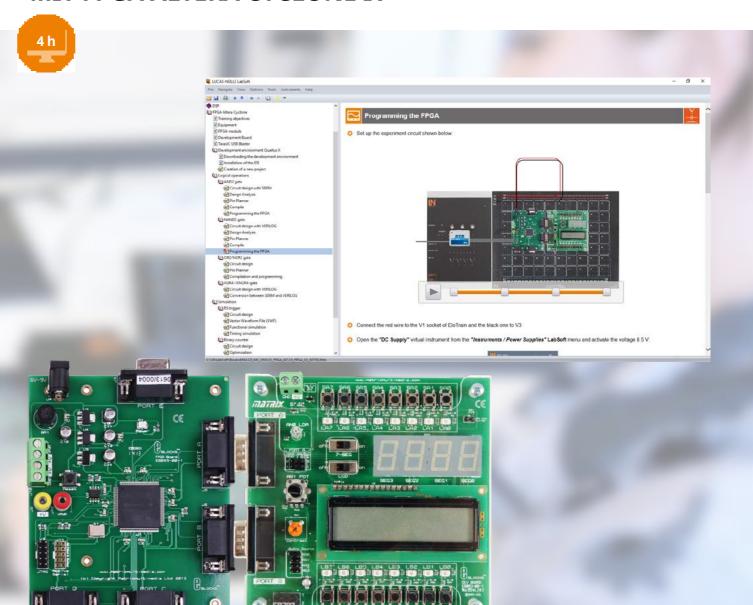
- Einführung in die Struktur, die Einsatzbereiche und die Funktionskomponenten von Mikrocontrollern
- Einführung in die integrierte Entwicklungsumgebung IDE und das Blocksystem mithilfe des Mikrocontrollers PIC16F887
- Assembler
- Programmerstellung und -ablaufsteuerung
- On-Chip Speicherkomponenten

Der Kurs beinhaltet die Übermittlung grundlegender Informationen zur Programmierumgebung.

Die Auszubildenden machen sich mit dem Aufbau des MC und seiner Peripherie sowie mit der strukturierten Programmierung vom Ansatz bis zur Lösung anhand von einfachen Beispielen vertraut.


Innerhalb der ersten Versuche erfolgt der Einsatz verschiedener Kontrollstrukturen und Interrupts sowie die Durchführung möglicher Bitmanipulationen in der Programmiersprache C. Es werden Ports, Portpins und der On-Chip-Analog-Digitalwandler verwendet.

erninhalte


- Einführung in die C-Programmierung für Embedded Systems
- Aufbau des 32-Bit Mikrocontrollers ARM Cortex M3 und seiner Peripherie
- Strukturierte Programmierung mit Interrupts und Unterprogrammen anhand einfacher Anwendungen
- · Verwendung von Funktionsbibliotheken
- Programmierung typischer Mikrocontrollerapplikationen wie Displayansteuerung mit I²C-Bus oder AD-Umsetzung

Art.-Nr. SO4206-9A Art.-Nr. SO4206-9B

VHDL MIT FPGA LATTICE XP2

VERILOG MIT FPGA ALTERA CYCLONE IV

Im Laufe der letzten Jahre ist die Leistungsfähigkeit elektronischer Systeme exponentiell gewachsen bei gleichzeitiger Verminderung der Schaltungsgröße.

Mit Hilfe von Programmierbaren Logikbausteinen (FPGA) ist es möglich, komplexe Funktionen bei einem minimalen Schaltungsaufwand zu realisieren.

Ziel dieses Kurses ist es, Sie mit den Grundlagen im Umgang mit FPGAs vertraut zu machen, so dass Sie in der Lage sind FPGAs für Ihre Projekte einzusetzen.

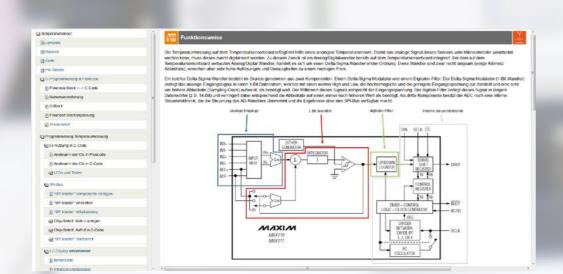
Lerninhalt

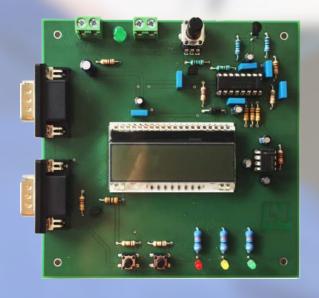
- Einführung in die programmierbare Logik
- Aufbau und Funktionsweise eines FPGA
- Designflow mit VHDL
- Sicherer Umgang mit der Lattice-IDE
- Umfassende Informationen über die Lattice XP2-Familie
- Erstellen eigener Schaltungsentwürfe
- Konfigurieren eines FPGAs

Diese Ausstattung garantiert eine blitzschnelle Einarbeitung in die IDE QUARTUS II und die Hardwarebeschreibungssprache VERILOG.

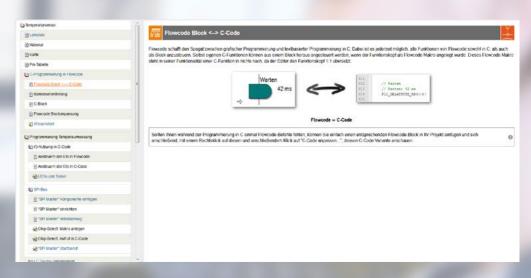
Die Experimente beginnen mit einfachen logischen Verknüpfungen und gehen später in die Entwicklung kleiner Anwendungen mit mehreren logischen Blöcken über.

Lerninhalte


- Einführung in die IDE QUARTUS II
- Logische Verknüpfungen AND2/NAND2/OR2/NOR2/XOR4/ XNOR4
- RS-Trigger
- Binärzähler
- Ereignissteuerung
- Entscheidung mit IF/ELSE und CASE/ENDCASE
- Funktionale Simulation und Timing Simulation


Art.-Nr. SO4206-9E

ERGÄNZUNGSAUSSTATTUNG ... TEMPERATURSENSOR-MODUL



... TEMPERATURSENSOR-BAUSATZ

Farts -1	Value -	Device *	Package	Description	HEXACT .	PERSTELLIA .	HERST_NA	DEPTRANT	LIEFTRANT_NR	- On
_IC Socke) 16	Sockel 16	Sockel 16	Sockel 26	Sockel 16		ASSMANN WSW	AR 16 HZL-TT	R5	674-2485	- 1
_IC Sockel 8	Sockel &	Sockel 8	Sockel 8	Sockel 8		ASSMANN WSW	AR 08 HZL-TT	RS	674-2479	1
C1, C2, C4, C6, C10	4µ7 35V	CPOL-EUE1.8-4	£1,8-4	POLARIZED CAPACITOR, European symbol		Nichicon	USR3V4R7M00	RS.	475-8905	5
CI	1µ 50V	CPOL-EUE1.8-4	E1.8-4	POLARIZED CAPACITOR, European symbol		Panasonic	ECEATHKS010	R5	116-997	1
05, 07, 09, 011, 012, 013	100nF	C-EU050-025X075	C050-025×075	CAPACITOR, European symbol		EPCOS	832529C1104/	RS	334-300	6
CB	200yF 19V	CPOL-EUE2-5	62-5	POLARIZED CAPACITOR, European symbol		Panasonic	ECATOMIOI.	85	228-6650	1
01	194001	284001	DO41-30	DIODE		Vishey	3N4000-E3/54	#S	628-8931	1
ig.	ICI786094+	(C.7960CPa+	DiP762W56P254L938H457Q88	I.C. ICL 7660 CFA ICL7660CFA+, Charge Pump Inverting Step Up 2254 10 kHz -10 -1.5 V, 3 20 V, 8-Pin, PDIP			ICL7660CPA+	RS	540-2912	
102	LM35DZTO92	LMISOZTO92	T092-E1	IC, TEMPERATURE SENSOR, GAC	4.972/1010	Texas Instruments	LM350Z/NOPB	RS.	922-4836	
14	DW350CrU92	(MI)OCTON	109011	MAX1108CPE -, 14 bit ADC Differential, Serial, 16 Pin		resas instruments	UNUSUAL/NOPE	10	744-4010	-
ics	MAXI108CPE+	MAXISORCPE+	D/P762W56P254L1918H508Q16N	POIP	5.08mm	Maxim integrated	MAX1108CPE+	85	797-9824	
ICA	LT1009CLP	LT1009CZ	T092	Voltage Reference 2.5V	3.08/0/0	Texas Instruments	LT1009CLFR	85	661-9792	-3
104	L) 1009GF	\$13009C2	1092	MULTICOMP SSOM1-09P-02-01-F1 D Sub Connector, 9		rexes instruments	T) TOOM TO M	KO.	001.01.07	-
n.a	5504F1-09F-02-03-F1	\$50#F1-09F-02-05-F1	\$50#71-08P-02-05-F1	Contacts, Flug. DE, D Sub Forned Fin Series, Metal Body Solder		MULTICOMP	\$504F1-09F-02-03-F1	Fameli	1084697	
18.14	7902064	7902064	5HDR2W110P0X508 1X2 1016X810X1		10 Smm	RS Components	790-1064	85	790-1064	-
LCD1	EW DOOM185	EA_DOGM162	EA_DOGM	ELECTRONIC ASSEMBLY, GMBH	au prom	Electronic Assembly	EA DOGMSEZW-A	RS .	758-8605	-
LED BL		EA_LEDSSXSI_MONO	EA LEDSSIGS	LCD Backlight		Electronic Assembly	EA LEDS5x31-W	85	758-8655	
TED OF	Red Red	FECTEDISKST MONO	MDIMM	UD Imm Red		Kingbright	L-954/D	85	228-5916	-
LED2	Yellow	LEDSMM	LEDSMM	LED 3mm Yellow		Kingbright -	L-934YD	RS	228-5966	-
1002	Green	MMCG3	TEDOMM	LED John Green		Kingbright	L 93400	RG RG	228 5944	-
POWER	GREEN	LEDSMM	LEDSMM	LED Smm Green		Kingbright	L-53GD	85	228-6004	-
81, 82	29	R-EU 0207/20	9297/10	RESISTOR, European symbol		RS Pro	202-2666	85	707-7666	2
R10	346	R-EU_0207/30	0207/10	RESISTOR, European symbol		TE Connectivity	LRIFINS	85	148-635	-
P11	256	R-EU 0207/20	0207/20	RESISTOR, European symbol		TE Connectivity	LR1F1M0	85	149-228	-
R15. R16. R17	330R	R-EU 0207/30	0207/10	RESISTOR, European symbol		TE Connectivity	ROXIS/330R	85	214-1068	-
P16	308	R-EU_0207/20	0207/10	RESISTOR, European symbol		KOA	CF51/2CT52A300)	RS.	124-2740	-
R1. R12	108	R-EU_0207/30	0207/10	RESISTOR, European symbol		RS Pro	707-8060	85	707-8063	-
84.85	2208	R-EU 0207/30	9297/10	RESISTOR, European symbol		Vishey	MR525000C2200FCT0		683-3314	-5
R6 R7 R8 R9 R11 R14 R19		R-EU_0207/20	0207/10	RESISTOR, European symbol		RS Pro	707-7745	95	707-7745	7
5W1. 5W2	015-6	075-6	075-6	DTS(M)-6 Series Modular Tact Switches		Apen	DTS63KV	85	578-6448	2
11	BC546	BC547	7092	NPN TRANSISTOR		Fairchild Semiconducto		85	761-9816	1
vR1	208	POTENTIOMETER-9TH-9MM-1/20W-20%		Potentiometer (Pot)		Alps	EK09K1130081	85	729-3603	-0

Diese Ausstattung umfasst ein vollwertiges mikrocontrollergesteuertes Thermometer mit einer LCD-Anzeige.

Die Programmieraufgaben zu diesem Projekt werden mit Hilfe der Flowcode-IDE und mittels C-Programmiersprache gelöst.

Lerninhalt

- Programmierung Temperaturmessung
- IO-Nutzung in C-Code
- SPI-Bus
- LC-Display
- Analog-/Digital-Wandler

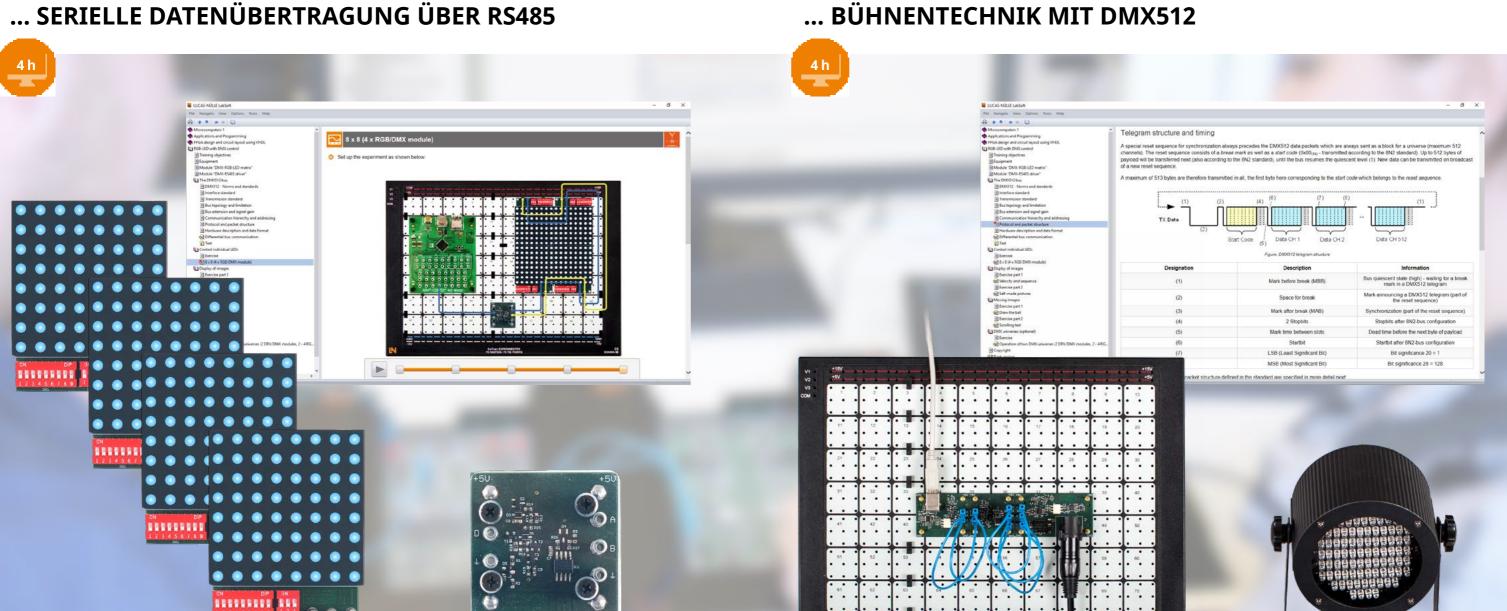
Ein Projekt zum Aufbau eines elektronischen Gerätes:

Diese Ausstattung stellt Lötarbeiten und Inbetriebnahme eines Thermometermoduls in den Fokus. Zuletzt wird eine Software zur Ansteuerung des Thermometers mit Flowcode erstellt. Sobald die Raumtemperatur richtig angezeigt wird ist das Projekt abgeschlossen.

Lerninhalte

- Schaltung verstehen
- Bestückungsplan analysieren
- Lötübungen
- Inbetriebnahme eines Thermometermoduls
- Programmierung Temperaturerfassung
- Fehlersuche und Debugging

Ergänzung zur Basisausstattung CO4205-7A "8-bit PIC16F1937"


Thermometer (ohne Software) kompatibel mit allen Mikrocontrollern

Art.-Nr. CO4205-7Y

Ergänzung zur Basisausstattung CO4205-7A "8-bit PIC16F1937"

Art.-Nr. CO4205-7YB

ERGÄNZUNGSAUSSTATTUNG ... SERIELLE DATENÜBERTRAGUNG ÜBER RS485

Der Bus RS485 ist eine klassische industrielle Schnittstelle zur asynchronen seriellen Datenübertragung über eine symmetrische Leitung.

Im Gegensatz zu anderen Bus-Systemen definiert der RS485 ausschließlich elektrische Schnittstellenbedingungen. Das Protokoll wird anwendungsspezifisch ausgewählt.

Ansteuerung von RGB-LED-Matrizen erfolgt über das bühnentechniktypische DMX512-Protokoll.

Ergänzung zur Basisausstattung SO4206-9B "32-bit Cortex M3"

Bus-System (ohne Software) kompatibel mit allen Mikrocontrollern

Art.-Nr. SO4206-9G

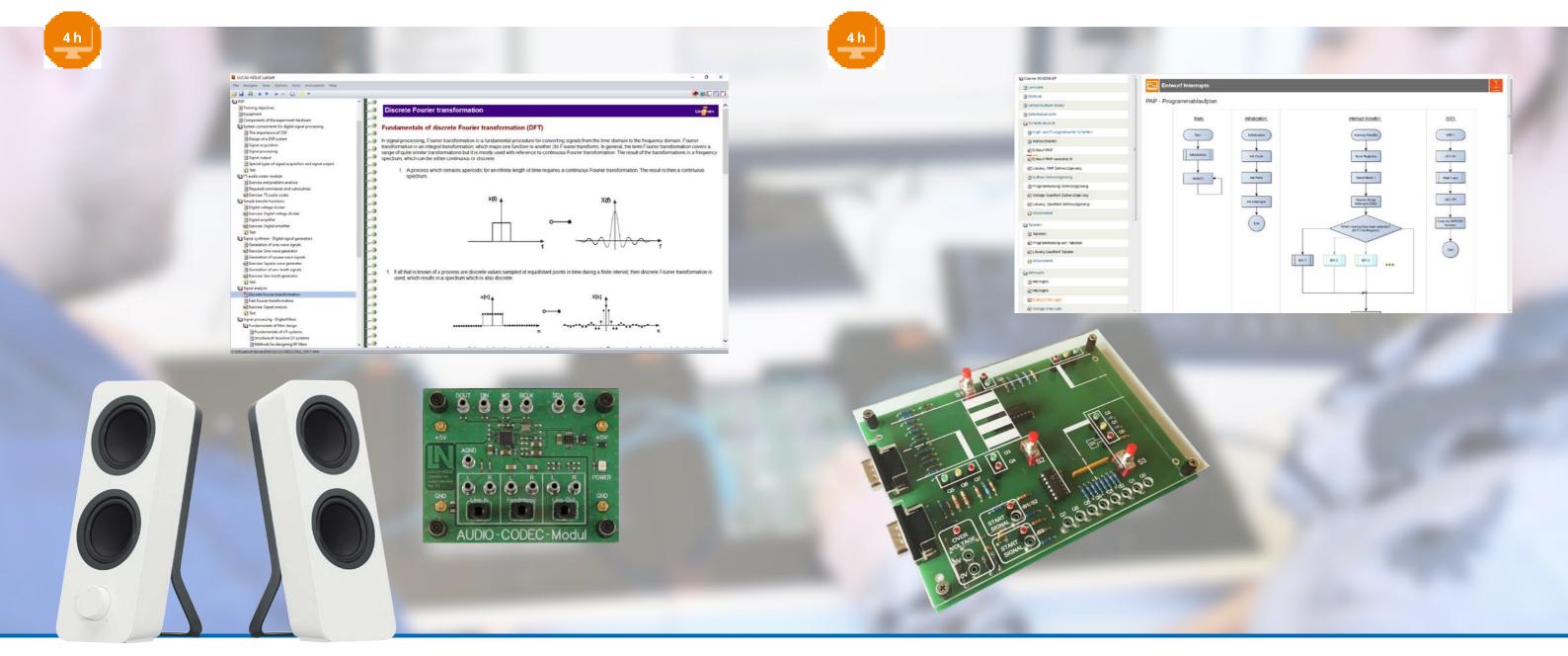
Lerninhalte

- Die Schnittstelle RS485
- DMX512 Normen und Standards
- · Bustopologie und Limitierung
- · Bus-Erweiterung und Signalverstärkung
- · Kommunikationshierarchie und Adressierung
- Protokoll und Paketaufbau
- Praktische Aufgaben

Moderne Bühnengeräte mithilfe der Trainingssysteme von Lucas-Nülle ansteuern:

Diese Ausstattung ergänzt die serielle Datenübertragung über RS485 um Treiber- und Adaptermodule, sodass eine Integration beliebiger DMX512-konformer Bühnentechnik möglich wird. So steuern Sie u. a. Licht, Nebelmaschinen und Laserstrahler an.

Lerninhalte


- Einführung in die DMX512-Technik
- Inbetriebnahme und Konfiguration
- Direkte Ansteuerung mit einem simulierten "Lichtpult"
- Automatisierte Ansteuerung über einem Mikrocontroller

Ergänzung zur Ausstattung SO4206-9G "Serielle Datenübertragung über RS485"

Art.-Nr. SO4206-9H

ERGÄNZUNGSAUSSTATTUNG ... DIGITALE SIGNALVERARBEITUNG

... AMPELSTEUERUNG AN EINER KREUZUNG

Die Erweiterung umfasst ein Audio-Codec-Modul und aktive Lautsprecher*.

Im beiliegenden Kurs werden grundlegende Zusammenhänge zur Theorie digitaler Übertragungsfunktionen, Filter und Signalgeneratoren erklärt. Die erarbeitete Theorie wird dann unter Einsatz authentischer Soundeffekte programmiert.

*Die mitgelieferten Lautsprecher können in Modell und Farbe von der Abbildung abweichen.

Ergänzung zur Basisausstattung SO4206-9B "32-bit Cortex M3"

Modul und Lautsprecher (ohne Software) kompatibel mit allen Mikrocontrollern

Art.-Nr. SO4206-9C

Lerninhalte

- Einführung in DSP
- Systemkomponenten der DSP
- Übertragungsfunktionen
- · Digitale Filter und Signalgeneratoren

Über Ampelschaltungen lässt sich der Einsatz von Mikrocontrollern alltagsnah veranschaulichen. Diese Ausstattung bietet einen soliden und klassischen Einstieg in die Anwendung der Mikrocontroller-Technologie.

Die Aufgabe kann unproblematisch mit verschiedenen Programmiersprachen umgesetzt werden.

Lerninhalte

- Schleifentechnik
- Tabellen
- Interrupts
- Ampelsteuerung

Ergänzung zur Basisausstattung CO4205-7A "PIC16F1937"

Ampelmodul (ohne Software) kompatibel mit allen Mikrocontrollern

Art.-Nr. SO4206-9F

CPS - CYBER-PHYSISCHE SYSTEME

ERGÄNZUNGSAUSSTATTUNG CYBER-PHYSISCHE SYSTEME

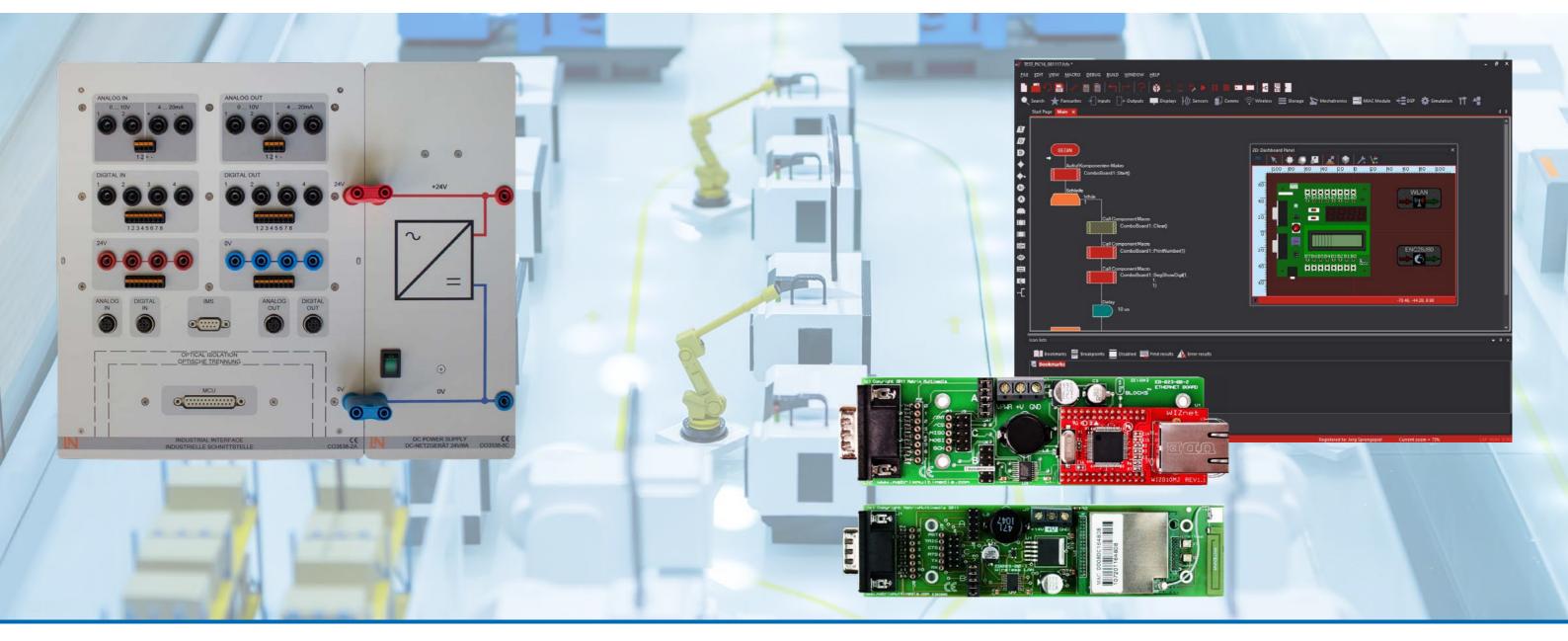
Cyber-physische Systeme verbinden informations- und softwaretechnische Komponenten mit der Mechatronik. In Echtzeit erfolgen dabei Datenaustausch, Steuerung und Regelung über eine Netzwerkinfrastruktur wie das Internet.

Wesentliche Bestandteile sind mobile und bewegliche Geräte und Maschinen (darunter auch Roboter), eingebettete Systeme und vernetzte, intelligente Teilnehmer (Internet der Dinge). In der Industrie 4.0 übernehmen cyber-physische Systeme eine der zentralen Funktionen.

Das Projekt "Cyber-physische Systeme" umfasst mehrere Geräte. So kann der gesamte Weg von der Programmierung über die mechatronische Anlage bis hin zur Regelung an einer Ausstattung erlernt werden.

Geräteumfang

- Mikrocontoller-Programmiermodul
- Adapter Sub-D9/Sub-D24
- · Modul "Industrielle Schnittstelle"
- · Modul "Stromversorgung für die Industrielle Schnittstelle"
- Modul "Förderband"
- Weitere auf Anfrage


Lerninhalte

- Inbetriebnahme eines mechatronischen Systems
- Spannungspegelwandlung
- Galvanische Entkopplung
- Ansteuerung einer Industriemaschine
- Überwachung mittels Sensorik
- Programmieren mit Flowcode (Erweiterung mit Integration C-Code möglich)

Das CPS umfasst diverse Artikel

ERGÄNZUNGSAUSSTATTUNG INDUSTRIELLE SCHNITTSTELLE

INTERNET OF THINGS – EIN INTELLIGENTER KNOTEN

Das Modul "Industrielle Schnittstelle" kann auch unabhängig von der Ausstattung CPS bestellt werden. Es schafft die Verbindung zwischen der Welt der Mikrocomputer und der Industrie.

Mit diesem mächtigen Werkzeug lassen sich beliebige industrielle Komponenten wie Förderbänder, Motoren oder Aufzüge gefahrlos von allen Mikrocontrollern aus unserem Programm ansteuern.

Technisch einen Schritt weiter

- Vollständige optische Entkopplung aller Ein- und Ausgänge
- Pegelumsetzung der digitalen Signale von 3,3 V oder 5 V auf 24 V
- Pegelumsetzung der analogen Signale von 1 V auf 10 V
- Messinterface 4 bis 20 mA
- Digitale Ausgänge belastbar bis 0,5 A (gesamt 5 A)
- 8 x digitale Ein-/Ausgänge, 2 x analoge Ein-/Ausgänge
- 4-mm-Sicherheitsbuchsen, Klemmleisten, M12-Steckverbinder
- IMS-Anschluss

Die Erweiterung um eine "Ethernet-" und eine "WIFI-Schnittstelle" macht das Projekt CPS zu einem vollwertigen Teilnehmer im "Internet of Things"

Mit Sensoren erfasste und mit dem Mikrocontroller aufbereitete Daten werden drahtlos oder per Kabel übermittelt. Eine Cloud-Datenbank ermöglicht die zentrale Verarbeitung der übermittelten Daten. Hierzu werden wichtige Aspekte der Datensicherheit erklärt.

Lerninhalte

- Ethernet-Schnittstelle
- WIFI-Schnittstelle
- Cloud Storage
- Cyber-Security

Art.-Nr. CO4205-7Z

BASISAUSTATTUNG GRUNDLAGEN DER COMPUTERTECHNIK

ERGÄNZUNGSAUSSTATTUNG ANWENDUNG UND PROGRAMMIERUNG

Kenntnisse rund um das Thema "Mikroprozessor" in Theorie und Praxis: Neben den grundlegenden Baugruppen und Funktionseinheiten eines Mikrocomputers wird mit ausgewählten Befehlen dessen Steuerfunktion anschaulich dargestellt.

Lerninhalt

- Einführung in den Aufbau eines Mikrocomputersystems
- Einblick in den Befehlssatz der CPU
- Ein-/Ausgabe-Monitoring
- Experimentelles Nachvollziehen von Programmabläufen
- Überwachen der Befehlsausführung
- Kennenlernen der historischen Entwicklung

In dieser Ausstattung steht die Entwicklung von Programmen für den Einsatz des Mikrocomputers als Steuergerät in steuerungstechnischen Anwendungen im Fokus.

Mit ausgewählten Beispielen werden verschiedene Anwendungen wie zum Beispiel die AD-Wandlung oder die Steuerung einer Verkehrsampel praktisch durchgeführt.

Lerninhalte

- Befehlsarten und Befehle
- Erstellen und Auswerten von Assemblerprogrammen
- Untersuchung von Programmlaufzeiten
- Programmieren von Timern, Schleifen, Unterprogrammen und Interrupts
- Erstellen von Programmen zur Verarbeitung von analogen Werten und zur alphanumerischen Ausgabe auf dem Display
- Analysieren und Programmieren einer Ampelsteuerung
- Erstellen von Programmen zur seriellen Datenübertragung
- Kennenlernen und Anwenden von Techniken zur Fehleranalyse

Art.-Nr. SO4204-6H

Art.-Nr. SO4204-6H

